2 research outputs found

    Pilot in loop assessment of fault tolerant flight control schemes in a motion flight simulator

    Get PDF
    This research presents the pilot in the loop tests carried out in a Six-Degree of Freedom (6-DOF) motion flight simulator to evaluate failure detection, isolation and identification (FDII) schemes for an advanced F-15 aircraft. The objective behind this study is to leverage the capability of the flight simulator at West Virginia University (WVU) to carry out a performance assessment of neurally augmented control algorithms developed on a Matlab/Simulink RTM platform. The experimental setup features an interface setup of Gen-2 SimulinkRTM schemes with MOTUS Flight Simulator (MFS). The set up is a close substitute to a real flight and thus is helpful in evaluation of the schemes in a realistic manner. The graphics in X-plane is used to obtain visual cues and the motion platform is used to obtain motion cues in the simulator cockpit. The whole set-up enables the pilot to respond with a joystick in the advent of a failure as he would otherwise in a real flight. The pilot response in maintaining the mission profile is different for different neural network augmentations and thus an indication of performance comparison of these schemes. Secondly, FDII schemes are developed for a sensor and actuator failure using an adaptive threshold for cross-correlation coefficients of the angular rates of the aircraft. Failure detection, isolation and identification logic is formulated based on monitoring the cross-correlation parameters with their Floating Limiter (FL) bounds. The FDII scheme developed shows a good performance with desktop simulation because of no pilot activity but with a pilot in the loop significant cross-correlation of the rates occur and hence the scheme become more susceptible to wrongs FDII. In addition, the pilot might induce some coupling of the cross-correlation parameters between detection and identification time which may trigger false detections and may configure the controller differently based on incorrect detection. Thus it is necessary that FDII scheme accommodate real flight conditions. The performance of the FDII schemes is improved with a pilot in the loop by monitoring the cross-correlation parameters and fine tuning FDII algorithms for real situations. This study has set up an excellent example to effectively utilize the aural, visual and motion cues to create a higher level of simulation complexity in designing control algorithms

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society
    corecore